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Abstract This study investigates Le effects of dissipation on the quasi-particle uanspoit 
in a degenerale molecular himer in which L e  time evolution is described by the discrete 
non-linear Schmdinger equation. The sfandard procedure of inrroducing dissipation as a 
phasedestroying stochastic parameler through rhe mrresponding liouville-von Neumann 
equation is employed. A dosed second-order inlegrodifferenrial equation desaibing the 
time evolution of Le site occupation probability difference k derived in the simultaneous 
presence of non-linearity and dissipation for himers in wmpact geometty subjected Io 
specific initial wnditions. The Painled properly of the evolution equation is mamined 
and it is found that the system is nor of p type. 

A mnflict arising from the two opposing views uisting in the iiterdture on the effecls 
of dissipation on non-linear dynamim in a dosely elated system k focwed on. Both 
the resolution of this conflict and a description of trimer dynamics are provided by 
elucidating the &ecfs of the inlerplay between dissipation and non-linearity through 
numerical uperimenls. 

1. Introduction 

In the field of condensed matter, the non-linear Schrodmger equation is largely used 
to describe the transport characteristics of particles and quasi-particles which interact 
with the vibrations of the ‘solid’ strongly enough to induce dynamic disorder [I-31. 

In this contextt, it may be written as 

N 

iC,(t) = V,,c,(f) + [ E ,  - xlc,(~)lzlc,(~) (1) 
n=1 

where h = 1 and c,(t) is the amplitude that the particle is at the state Im) (e.g. 
a localized Wnnier state centred on site m at time t). V,,,, is the intersite matrix 
element which describes the transfer of the particle from state Im) to state In). The 
effect of strong coupling between the particle and the vibrations of the ‘solid’ is to 
lower the site energy E,,, of the particle by an amount proportional to the product 
of x (non-linearity parameter) and the probability l ~ , ( t ) [ ~  of finding the particle at 
site m. N is the total number of sites. Solutions to equation (1) are not known 
in general for discrete systems of an arbitrary number of sites [4]. The integrability 
properties of the dimer ( N  = 2) and trimer ( N  = 3) cases have been extensively 
investigated in the absence of dissipation [5-7]. The dimer case has been furthermore 

t It should be recalled hat equation (1) holds in the ‘adiabatic limit’ of infinitely fast vibrational relaxation. 
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elaborated upon to gain insight into the physics of transport phenomena in extended 
systems [8,9]. 

In this limit, the formation of localized (self-trapped) states provided that the 
non-linearity is strong enough has been well established. 

The dimer case has also been chosen to understand the dynamical behaviour of 
discrete non-linear systems in the non-zero dissipation limit [IO, 111. In these studies, 
dissipation is introduced into a corresponding Liowille-von Neumann equation as a 
stochastic parameter causing dephasing of the dimer state evolution in both the site 
[lo] and the symmetry-adapted [ll] representations. In [lo], it was concluded that 
irrespective of the nature of nondissipative dynamics the net effect of dissipation is 
to force the system to have a completely delocalized probability distribution. On the 
othcr hand, Banach and Zajac [ll] have reported that, depending on the interplay 
of the non-linearity, dissipation and transfer parameters, the system may or may not 
be driven to the completely delocalized probability distribution. 

We note, however, that in both analyses the point of departure is the full stochastic 
Liouville-von Neumann equation. merefore, both should make predictions which are 
a fortiok independent of representation. One may refer to the appropriate references 
(12,131 for a detailed discussion of this point for the case of the linear stochastic 
Liouville equation. 

Consequently, we think that it is worthwhile to address this conIiict We shall 
resolve the contlict in the context of dissipative non-linear dynamics of a trimer with 
specific initial conditions. One of the purposes of introducing this trimer, rather than 
repeating the dimer analyses, is to investigate the dynamics in a more extended system 
than a dimer. Secondly, it allows direct comparison of the studied dynamics with the 
dimer cases in conflict, since the specific initial conditions chosen restrict trajectories 
to those of a dimer [5-7. 
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2. Time evolution of the site occupation probability difference 

Equation (1) and its complex conjugate can be written as a Liouville-von Neumann 
equation for the density matrix elements p,,(t) = cm(t)c,(t)* in the site 
representation 

where the site energies are assumed to be identical (degenerate). 
The net effect of dissipation is to destroy the phase of the quasi-particles. The 

standard procedure for describing phase-destroying processes is to add terms to 
equation (2) which cause a decay in the off-diagonal elements of the density matrix 
[14]. The resulting non-linear adiabatic Iiouville-von N e w "  equation assumes the 
form 

b,,(t) = -iC[V,Ppp,(t) - pmp(t)Vpnl + ix[p,,(t) - p, , ( t ) l~ , , ( t )  
P 

- 4 1  - &mn)pmn(t)  (3) 

with CY being the rate of dephasing of the offdiagonal density matrix elements. 
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The system considered is a degenerate molecular trimer in compact geometry 
in which all sites are connected with equal intersite matrix elements. Using (3),  it 
is straightfonvard to wite the time evolution of the density matrix elements of a 
compact trimer explicitly by setting all the V s  equal. 

Under a certain class of initial conditions, it is possible to convert the set of trimer 
equations obeying (3) into a closed second-order integrodiiferential equation for the 
time evolution of the site occupation probability difference (sOPD). 

This particular class of initial conditions is defined such that the SOPD between 
a pair of sites of the trimer is zero at all times and can be satisfied if any two of 
the sites are initially excited with equal probability. In the derivation below, it will 
be assumed that site 1 is excited with a certain probability pu(0) and that the sites 
2 and 3 share the remaining probability equally, ie. pp(0 )  = ~ ~ ( 0 ) .  It should 
be noted that two commonly employed experimental initial conditions, i.e. complete 
localization (p,,(O) = 1) and complete delocalization (p i i (0 )  = 4, i = 1, 2, 3) follow 
as two special cases of the initial conditions defined above. 

It then becomes possible to define the SOPD as p ( t )  = p l l ( t )  - p z ( t )  = 
p l l ( t )  - p B ( t ) ,  since pz( t )  - pB( t )  will always remain zero. In addition to p ( t ) ,  
the real variables q( t ) ,  r ( t )  and s ( t )  can be defined in terms of the density matrix 
elements as 

d t )  = i[PZI(O - PlAt)l = i[P,l(t) - P13(t)l 

s ( t )  = -I- P32( t ) .  

r(i) = + = p31(t) + P13(t) 

The set of trimer equations obeying (3) can now be written in terms of these new 
variables as 

p ( t )  = -3Vq(t)  (‘w 
Q(t) = ZVP(t) t V [ r ( t )  - s(t)l+ XP(t)T(t) - adt )  (46) 

i(t) = -Vs(t)  - x p ( t ) q ( t )  - ar(t) (44 

s ( t )  = 2Vq(t)  - as ( t ) .  (4d) 

r ( t )  = r(O)exp(-at) - V I ,  - x I z  (5.4 
s ( t )  = 40)  -(-at) + ZVI, (5b) 

The solutions to (4c) and (4d) are 

where 
l C  I, = -w 1 p (  1 ’ )  exp[-a( t - t’)] dt’ 

l i  I,  = -3v1 p ( t ‘ ) p ( t ‘ ) e x p [ - a ( t - I ‘ ) ] d i ‘  

and r(0) and s(0) are the initial values of r ( t )  and s ( t ) .  Insertion of r ( t )  and s ( t )  
into (46) and the subsequent substitution of the outcome into (4a) yield 

@(t )  + ap(t) = -[6V2 + 3 ~ V r ( O ) - ( - a t ) ] p ( t )  + [9V3 t ~ X V ~ P ( ~ ) ] I I  

t [ 3 V Z ~ + 3 ~ Z V p ( t ) ] l ~  t 3 V 2 ~ p ( - ~ t ) [ 4 O )  - y(0)J. (6) 
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Figwe L FAT& of the interplay of the dissipation 
with transpart non-linearity. Predictions are bgsed 
on the numerical solutions of the exact equation 
(equation (6)). (U) ?he rate of dissipation is kept 
fixed at of2V = 0.25 and x/4V changes as 
-2.5 (top), -1.51 (middle) and -1.0 @ortom). 
(b), (c) 'The effects of variation in the amount 
of disipation (e/ZV = 0.05, ill and 05 from 
the top to the bottom) are shown (b) in the self- 
trapped (x/4V = -1.60) and (c) in L e  free- 
panicle (x/4V = -1.25) dynamics regions. 

Equation (6) is the closed integrcdifferential equation which describes the dynamics 
of the excitations in our trimer in the simultaneous presence of non-linearity and 
dissipation. 

3. Resulits and discussion 

It has been repeatedly emphasized in the literature that there is an apparent 
connection between the integrability of ordinary non-linear differential equations 
and the Painlev6 property [15,16]. On the basis of the singular point analysis of 
Ablowitz, Ramani and Segur ( a s )  [U], it has been concluded that equation (6), 
or equivalently equation (4), does not satisfy the necessary conditions to possess 
the Painled property (see appendix). Therefore, the behaviour predicted by (6) is 
analysed using the standard integration algorithms [IT. 

In all figures, the SOPD is drawn versus time in units of 1/2V. The excitation is 
assumed to be initially lmlized ( p ( 0 )  = 1; r(0) = q(0) = s(0) = 0) in one of the 
sites of the trimer which is chosen particularly to allow comparison with the dimer 
cases. The non-dissipative dynamics of our system have been described in several 
studies in the literature. Although it is possible to recover those results by letting 
o = 0, we shall not repeat them but refer the reader to the appropriate articles 



Dissipative non-linear dynamics in a uimer 903 

15-71. For the purposes of this study, it is sufficient to recall that one can distinguish 
between the two regimes of the parameter space: x/4V > 0 and x /4V < 0. In 
both regimes, the formation of the self-trapped states is the rule provided that the 
non-linearity is strong enough. 

The effects of the interplay of the dissipation with transport non-linearity predicted 
by (6) are shown in figure 1. First, the amount of dissipation is kept constant and 
the non-linearity parameter is changed (figure I@)). Then, the behaviour under 
different rates of dissipation for self-trapped and freeparticle dynamics are displayed 
respectively, in figures l(b) and l(c). It is to be understood that the signature of 
the self-trapped states is the ‘incomplete’ oscillations on the positive side of the p (  t) 
scale. In the absence of dissipation, transition from the free-particle to self-trapped 
dynamics takes place at x/4V = -1.5 and 0.5 in the two regimes. 

The persistence time of the self-trapped states becomes longer, the higher the non- 
linearity parameter and/or the lower the rate of dissipation. Nevertheless, irrespective 
of the character of the dynamics, the dissipation causes the trimer eventually to reach 
equilibrium. Although we do not provide the results of the numerical experiments 
for x/4V > 0, the rule is again the same: dissipation drives the system to the 
equilibrium state in which the probability distribution is completely delocalized. 

Next, the behaviour of equation (6) in the Limit exp(-at) Y 1 is examined in 
order to relate it to the results of Banacky and Zajac which conflict with both those 
of ?Sironis er al and those presented above. In the limit exp(-at) E I, the integrals 
I, and It (see equation (5)) reduce to 

I ,  = - ( 1 / 3 v ~ t )  -p(0)1 r2 = - ( i / 6 v ) [ p w 2  - ~ ( 0 1 ~ 1 .  

Consequently, the dynamics are characterized by an ordinary second-order 
inhomogeneous non-linear differential equation 

@ ( d )  + aP(t) = Ap(tI3 + Bp(t)* + C p ( d )  + D 0 
where 

A = - 0 . 5 ~ ~  

B = -1.5xV 

C = -9Vz + 0 . 5 ~ ~ p ( O ) ~  + xV[p(O) - 3 ~ ( 0 ) ]  

D = 3Vzp(0) + 0 . 5 ~ V p ( O ) ~  + 3V2[s(0) - r(O)]. 

The simulations of the non-linear dissipative dynamics resulting from equation (7) 
are shown in figure 2 

The message of figure 2 is that equation (7) is a good approximation for 
exp(-at) N 1, a condition which is obviously valid at times shorter than 1/a. 
However, the non-linear nature of the equation makes this validity very strict in 
the sense that, at times that do not satisfy exp(-aut) N 1, not only is it a poor 
approximation but also it may completely fail to describe (even the qualitative features 
of) the dynamical behaviour inferred by the exact equation. 

It is now possible to resolve the conflict by combining the results given in figure 2 
with the following facts. 

- 
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'appmximate' equation (equalion (7)). (a) A mmparison tenveen the numerical solutions 
of (7) (-) and of (6) (+) for several values of x/4V = -2.5 (top), -1.51 
(middle) and -1.0 (boltom) at (r f2V = 0.75. (b)-(d) Simulalions for various values of 
lhe non-linearily parameler and for several values of the disipalion rate are displayed: 
(b) x/4V = 1.0 and o/ZV changes as 0.05, 0.1 and 0.s; (c) x/4V = O.ooO1 and 
a1211 changes as 0.05, 0.1 and 0.5; (d) x/4V = -1.48 and o/ZV = 0.02 (top) and 
x14V = -1.48 and 0/2V = 0.03 @Itom). 

(i) The conclusion of Banach and Zajac [ll] is based on the numerical simulations 
of the dimer counterpart of equation (7) which incidentally assumes the same form 
in both the site and the symmetry-adapted representations. In any case, any physical 
quantity, if calculated on the basis of the same transport tool, must assume values 
independent of the representation used [I& 131. 

(U) The initial conditions chosen restrict trajectories of the trimer to those of the 
dimer. Such trajectories are a set of zero measure in phase space of the trimer [5-7]. 

Consequently, in [ll], saturation of p ( t )  to certain non-zero values at long 
times following the free and/or self-trapped oscillations are mistakenly interpreted 
as offering rich and very interesting possibilities for quasi-particle transport. 

The apparent dissipation-assisted self-trapping transition (see especially fig- 
ure 2(d)) which had been interpreted as the long-time settling of the system into 
the nondissipative stationary states of the corresponding non-adiabatic dimer [U, 191 
is simply an artefact that arises as a result of the inadequacy of (7) or its dimer 
counterpart in describing the dynamics for times longer than that required to satisfy 
exp(-at) ZT 1. 

In concluding, we would like to point out that the tools developed here for 
understanding the dissipative non-linear dynamics in a trimer should be considered 
a step forward towards understanding more extended systems. The development has 
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been useful for the resolution of the conflict as to whether the net effect of dissipation 
is to destroy the self-trapped states if one waits for a sufficiently long time. 

Appendix. Painlev6 analysis 

The method of ARs [15] has been employed to examine the Painlev6 property of 
equation (6) or its equivalent form (4). 

An ordinaly non-linear differential equation (ODE) is said to have the Painlev6 
property (or to be of p type) if none of its solutions, viewed as a function of a complex 
variable, has movable critical points. A critical point (a branch point or an essential 
singularity) is termed movable if its location in the complex plane depends on the 
initial conditions. It is !mown that, if an ODE is of p type, it can be reduced to a 
standard form that can be solved in terms of elementary functions, elliptic functions 
and Painled transcendents [16]. 

'lb simplify the notation, the variables of the system ( n  = 4) of first-order ODES 
(4) are renamed as w1 = p, w 2  = q, wg = T,  w,, = s, and z is chosen as the 
complex variable of the problem. The system (4) satisfies the basic assumption of 
ARS: w; = Fi(z,  w l ,  . . . , w4), i = 1 , .  . . ,4, where each F; is analytic in z and 
rational (here algebraic) in wi. Moreover the dominant behaviour of the solution in 
the sufficiently small neighbourhood of the (movable) singularity is algebraic. Because 
of this assumption, ARS do not identify essential singularities. Therefore it can only 
provide necessary conditions for an ODE to be of p type. 

There are basically three steps to the Painlev6 test. 

(1) 'lb find the dominant behaviour around some possible singularity xu, one looks 
for a solution of the ODE in the form of 

w; Y a i ( z  - 2")P. i = 1 , .  .. , 4  (4 
where Re(pi) < 0. From the behaviour of the leading terms, the following ( a i , p i )  
pairs are obtained: 

(fZi/x,-I)  (&Zi/3Vx,-2) (-2/3Vx,-2) ( ~ 4 i / 3 ~ , - 1 ) .  (A2) 

Since each pi is an integer, one can proceed to the algorithm. 

that retains only the leading terms of the original equation and substitutes 
(2) 'Ib find the resonances, for each (a;, p i ) ,  one constructs a simplified equation 

wi = ai(. - 2")P. + p;(Z - Z")P'+' i = 1,. . . , 4  (W 
in the simplified equation. To leading order in p, one obtains 

(A4) 

where Q(T)  is a 4 x 4  matrix. The resonances are the non-negative roots of the indicia1 
equation which is obtained by setting det[Q(r)] = 0. Consequently, the resonances 
are found as r = -1, 1, 2, 4. The resonance T = -1 represents the arbitrariness of 
zu. There is no zero root since none of the a; is arbitraly in the first step. All the 
resonances, other than T = -1, are positive real integers. Furthermore, all possible 
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p;-values are integers. Therefore, there are no algebraic branch points. The fact that 
all the resonances are distinct is necessary, but not sufficient, to state that there are 
no logarithmic branch points. 

(3) If the system satisfies the conditions to be of p type, then one can in principle 
evaluate all the terms in the series 
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j=1 

where r, is the largest resonance. The last step to conclude whether the system 
(4) passes the test is to substitute (AS) into the original equation and to check 
whether the recursion relatiom obtained from this substitution are consistent to yield 
n - 1 (i.e. three) integration constants, and to determine all the coefficients. On the 
basis of the statement above, it is found that the sequential solutions of the recursion 
relations lead to inconsistency right at r = 1, which indicates the existence of movable 
logarithmic branch points. 
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